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Abstract 

With the development of increasingly complex hydrologic models that use a 

wide range of parameters to represent hydrologic processes both in space and time, many 

challenges arise with respect to simulation and quantification of uncertainty. The goal of 

this research is to introduce strategies to effectively and efficiently estimate and quantify 

hydrologic responses. A robust framework for parameter estimation and uncertainty 

quantification is proposed. The procedure also considers temporal variations over a time-

series. Specifically, two issues of traditional estimation schemes and uncertainty 

quantification methods were addressed: overparameterization and reduction of parameter 

uncertainty through quantitative information.  
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Parameters were categorized as distributed, inactive, or lumped by combining 

traditional concepts from identifiability and overparameterization with approaches from 

sensitivity analyses. This led to decreased dimensionality and thus less required 

computational demand. The framework takes into account climatic conditions over large 

scales. As a result, the modeler can investigate parameter uncertainty subbasin-by-

subbasin as well as temporal variations. The result is a novel estimation scheme capable 

of subjectively investigating likelihood to extract quantitative information, improving 

communication of hydrologic simulation data, and ultimately improving reliability of 

hydrologic models. 

The techniques proposed and demonstrated here were programmed within the 

MATLAB programming environment using the Linux platform. The hydrologic model 

used in this study was the Variable Infiltration Capacity (VIC) model. The finalized 

scripting environment will be made available to the modeling community.  
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Chapter 1   Introduction 

 

Our models should be designed expressly to maximize the possibility 

of discovering that of which we are ignorant.  ------------Beck (2002) 

 

1.1 Background 

Hydrologic models have become a powerful and reliable tool for simulating 

natural physical systems and estimating hydrologic impacts of changing watershed and 

climatic conditions. In order to explicitly recognize the inherit heterogeneity present in 

watersheds, complex large scale modeling schemes have been developed in recent years. 

These models numerically represent a range of environmental processes over temporal 

and spatial scales using a multitude of parameters (Ajami et al., 2004; Wagener et al. 

2005; Wagener et al., 2010). 

The increasing complexity of modern hydrologic models comes at the cost of 

increased parameter uncertainty and the inadequacy of classical approaches without 

considering uncertainty for evaluating model performance (Beven, 2000; Beven and 

Freer, 2001). It is necessary to perform a robust calibration and uncertainty assessment to 

sufficiently evaluate and improve upon hydrologic simulations and to conduct a 
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qualitative investigation of model behaviors. Accordingly, two questions arise with 

respect to improving model accuracy and computational efficiency in the processes of 

simulations and optimization procedures. First, how can we improve estimation 

efficiently and effectively for highly complex models? Second, what are the appropriate 

strategies to conduct a qualitative investigation for grouping or clustering simulations for 

distributed watershed models (Wagener et al., 2006)? 

Before discussing the questions mentioned above, some terms need to be 

defined. These definitions will be used frequently in the following chapters to address the 

challenges surrounding the application of distributed hydrologic models.  

1.1.1 Heterogeneity and Homogeneity    Spatial and Temporal Variability 

The true landscape defined by hydrologic models inherently displays a wide 

array of uncertainty as a result of spatial and temporal variability within all aspects of 

hydrologic processes (McDonnell et al., 2007; Lovett et al., 2006; Grayson et al., 2001). 

An initial step in the model development process is to determine whether a lumped or 

spatially distributed model is required. For example, due to the defined objectives by 

quantifying the infiltration, would a lump model be sufficient? If a relatively high degree 

of homogeneity is observed across the modeling domain, a lumped approach may be 

suitable. In this case, the parameters are considered to be uniform across the entire 

domain. In many cases, even when spatial variability (heterogeneity) exists across the 

landscape, the underlying processes can be sufficiently parameterized (e.g. area weighted) 

to produce sufficiently reasonable representations of the hydrologic processes.  
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As hydrologic sciences, numerical methods, and the availability of spatially 

explicit data continue to develop, it has become common to incorporate heterogeneity 

directly by representing basin characteristics in a distributed fashion and parameterizing 

the model on a cell-by-cell or subbasin-by-subbasin basis (McDonnell et al., 2007). This 

is accomplished through the use of spatially distributed inputs, such as digital elevation 

models (DEM), Geographic Information System (GIS), soil and vegetation mapping and 

remote sensing data (Lovett et al., 2006; Beven and Moore, 1992). Distributed models 

can be employed by coupling probabilistic methods and “grid” schemes with respect to 

hydrologic process interactions and by considering physical and dynamic variations in 

precipitation, land use / land cover, climatic conditions, and topography. Thus, distributed 

models can serve as an integrator of inputs to robustly deal with spatial variability. 

1.1.2 Sensitivity and Identifiability  Optimal Parameter Values vs. Optimal 

Parameter Sets; Overparameterization 

A powerful approach for evaluating model performance is through sensitivity 

analyses (Bell et al., 2000). The analyses can easily be implemented to estimate the 

response to a range of parameters in order to evaluate the stability and specificity of the 

parameterization. High sensitivities demonstrate significant changes to model 

performance with small perturbation in the input parameter values. In contrast, 

insensitive parameters will produce minor differences to the behavior of hydrologic 

simulations as the input is varied. If model results are insensitive, it can be interpreted 

that the parameterization process does not capture the underlying hydrologic response 

modes in the sense of physical interpretations. This is referred to as an 
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“overparameterization” condition (Schwarz, 1978; O’Connell, 1990, 1998; Pokhrel, et al., 

2008; Schoups et al., 2008; Whittaker et al., 2010).  

In spite of the usefulness of this process, sensitivity analyses alone do not 

consider non-uniqueness, which could be recognized by identifiability analysis especially 

in highly complex distributed models. Parameters are considered to be identifiable when 

they demonstrate a distinct minimum region with a specific objective function (e.g. 

relative error) (Figure 1-1 (b)). In contrast, non-identifiable parameters (Figure 1-1 (a)) 

will lead to equally acceptable model performances through the whole feasible parameter 

range. An identifiability analysis helps the modeler better understand the characteristics 

of parameter without adequate prior information and also helps her or him recognize a 

reasonable parameter range and detect a proper model structure (Sorooshian and Gupta, 

1985; Wagener, 1998) (tested in Chapter 2).  

With the development of increasingly complex models and likewise additional 

non-identifiable parameters, traditional methods based on identification of unique optimal 

parameters are giving way to new methods aimed at identifying equal performing optimal 

parameter sets. Non-identified phenomena will progress to another hydrologic condition 

involving uncertainty analysis, termed as “equifinality” (as described below). 

1.1.3 Equifinality vs. Uniqueness    Optimal Sets vs. Optimality  

Within traditional hydrologic model calibration approaches, a manual trial and 

error process is typically employed along with a sensitivity analysis. The approach 

assumes there is one optimal parameter set that uniquely matches the observed behavior. 

However, with the increasing degree of model complexity, modern approaches must also 
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consider parameter interactions. Each parameter can take a value across the entire 

feasible parameter space, which can lead to a large number of acceptable model 

parameterizations. The issue of non-uniqueness of optimum parameters or parameter sets 

is referred to as equifinality (Beven, et al., 1992; Beven & Binley, 1996; Beven, 2000; 

Yapo et al., 1998; Duan, et al., 2003; Abbaspour et al., 2004; Beven, 2006; Beven et al., 

2011). 

Accordingly, traditional calibration and simulation schemes based on a unique 

optimal solution are not adequate for dealing with highly complex models due to the 

equifinality condition. The uncertainty analysis should be quantified within a robust 

framework to significant the extent of influence to hydrologic impacts. 

1.1.4 Equal to vs. Equivalent    Uncertainty Quantification 

The existing uncertainty of parameters raises a question with respect to 

traditional model evaluations: How do we evaluate the simulation results and 

quantify/communicate uncertainty to support decision making? 

As mentioned above, the optimal parameter sets arising due to equifinality are 

equal with respect to their ability to create acceptable model performance. However, the 

are not equivalent parameterizations. As a result, we cannot simply perform a 

mathematical average to all acceptable outputs to produce a final single optimal 

simulation. Rather, we can develop and apply likelihood weights to discriminate the 

degree of accuracy to each acceptable parameter set (Kavetski et al., 2006). To achieve 

the uncertainty quantification, two questions need to be answered: (1) How to 

discriminate equally performance parameters (behavioral sets) from randomly parameter 
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space? (2) How to reveal the extent of parameterization and uncertainty by aggregating 

those optimums? These questions are explored through this research. 

1.1.5 Summary and Extended Definitions 

In summary, as the application of complex hydrologic models grows in 

popularity, it is important to develop methods for accurately representing physical 

processes without sacrificing computational efficiency. For example, sensitivity and 

identifiability analyses can enhance the parameterization process by minimizing 

overparameterization of components (test in Chapter 2). The quantification of uncertainty 

can effectively define parametric modes and integrate available information reliably to 

inform decision-makers (test in Chapter 3). 

This research focused on evaluation of three issues related to the terms 

explained above. First, within a distributed model, if a parameter is found to be 

insensitive through a sensitivity analysis, it could indicate that the model is 

overparameterized. Further, if a parameter has a low degree of identifiability but is found 

to be sensitive, it also could be recognized as overparameterized. To account for this 

condition, I defined these parameters as lumped parameters, which can be assigned a 

single calibrated value rather than considering distributed values across a grid. This 

strategy leads to reduced complexity by decreasing parameter dimensionality. Second, 

with respect to identifiability processes, the traditional approach is to explore the 

acceptable or optimal parameter regions as a standard to discriminate between 

identifiable and non-identifiable parameters, while ignoring the whole parameter space. 

In this research, I introduce an approach for identifying the parameter space using cluster 
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plots, and investigate the interaction between the identifiability of parameters and their 

underlying connection to hydrologic processes. Third, with respect to temporal 

uncertainty, I investigated approaches for varying parameters by testing their 

performance and identifiability in a transient or dynamic nature over a time series 

streamflow hydrograph. 

Obviously, major challenges remain and room exists for improving the methods 

of parameterization, estimation, and improvement of hydrologic model performance. This 

research provides progress in this direction. 

1.2 Objectives 

Given the high degree of the complexity associated with distributed models that 

attempt to mimic the behavior of natural systems (especially to simulate streamflow in 

this research), there are a large number of parameters with high levels of uncertainty. The 

overarching goal of this dissertation was to advance methods for understanding and 

describing uncertainty associated with parameters from two aspects: estimation schemes 

and uncertainty quantification. These concepts were analyzed from the perspectives of 

spatial and temporal heterogeneity. 

With broadly versatile applications, highly complex hydrologic models reflect 

various degrees of parameterization. To achieve an efficient and accurate simulation with 

respect to specified hydrological aspects, the selection of the appropriate degree of 

complexity by proper parameterization becomes critical. Traditional strategies identify 

inactive parameters through sensitivity analyses. In this study, an alternative is proposed 
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where identifiability and sensitivity analyses are integrated to reduce free parameters and 

represent them as lumped wherever possible. It is also argued that a framework for 

dealing with variability across climate regions can also enhance the estimation of 

parameter sets.  

The strategies proposed here aim to address the overparameterization aspects of 

model calibration and to include a moderate level of complexity to the modeled system. 

This allows the modeler to shrink the parameter dimensionality and thus improve 

computational efficiency without diminishing accuracy of the hydrologic simulations. 

Population-based search algorithms were employed widely in this research they 

proved to be powerful search optimization methods for large calibrated distributed model 

parameters. This was found to be especially true when investigating the interactions or 

correlations between parameters. In this research, the uncertainty analysis was quantified 

within a novel framework by addressing two key issues: how to discriminate behavioral 

parameter sets as optimal ones from a random parameter population? And how to reveal 

the extent of estimation by aggregating those optimums? The overarching aim is to 

constrain the acceptable optimal parameter sets by decreasing the extent of uncertainty 

and to extract qualitative information that is more reliable and understandable to 

decision-makers. 

Finally, the temporal influence of parameter temporal uncertainty was 

investigated. This allowed for an estimation of the influence of parameterization on 

various hydrologic impacts over a time series.   
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1.3 VIC Model Characteristics 

The Variable Infiltration Capacity (VIC) model is a large-scale, semi-distributed 

hydrologic model (Liang et al., 1994, 2003). VIC has been developed and is supported by 

researchers at the University of Washington. It balances both the water and surface 

energy within grid cells by varied spatial (2-, 1-, 1/2-, 1/4-, 1/8-, and 1/16-degree) and 

temporal scales (3-hourly, daily, and monthly) with respect to water and energy budget 

terms (meteorological data, maximum & minimum temperature, wind speed, elevation, 

soil properties, vegetation characteristics, evapotranspiration, runoff, snow water 

equivalent, soil moisture, net shortwave and longwave radiation, latent and sensible heat 

fluxes, ground flux, surface temperature). VIC is parameterized based on water balance 

and energy balance principle and it has been widely implemented from water resources 

management to land atmosphere interactions and climate change by incorporation with 

General Circulation Models (GCMs) (VIC manual, 2010). The significant characteristics 

of the VIC model are its ability to consider spatial information represented by vegetation 

maps and multiple soil layers (3-soil layers) with variable infiltration and non-linear 

baseflow (Liang et al., 1994; Liang et al., 1996; Nijssen et al., 1997). From the pool of 

parameters, we selected five parameters controlling the surface and subsurface simulation 

based on streamflow behavior. Table 1-1 lists the main model components with basic 

mathematical formulations. 

The main features of VIC that are applicable to this research are as follows. The 

land surface is modeled as a grid of uniformly sized cells accounting for sub-grid 

heterogeneity (e.g. elevation, land cover) handled via statistical distributions. Inputs are 
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time series of daily or sub-daily meteorological drivers (e.g. precipitation, air temperature, 

wind speed). The model can use sub-daily meteorological data at intervals matching the 

simulation time step. VIC can consider spatial variability in precipitation, arising from 

either storm fronts/local convection or topographic heterogeneity and also it can 

subdivide the grid cell into a time-varying wet fraction (where precipitation falls) and dry 

fraction (where no precipitation falls). Land-atmosphere fluxes, and the water and energy 

balances at the land surface, are simulated at a daily or sub-daily time step. Land cover 

can be subdivided within each grid cell through any number of “titles” (Liang et al., 1994, 

1996). 

1.4 Key Contributions in This Research 

The framework performed here addressed an effective and efficiency 

estimation-quantification uncertainty analysis scheme to highly complex distributed 

model system. This approach includes improved incorporation of parameter sensitivity 

and uncertainty quantification. This work provides the following contributions to 

hydrologic sciences and water resources engineering:  

(1) Properties of parameter identification and overparameterization: we extend 

the applications of traditional definitions. Here, the parameters in distributed models are 

categorized as lumped and distributed parameters to decrease the model dimensionality 

using combined analysis of identifiability and sensitivity.  

(2) Considering inherent characteristics with respect to parameter interaction: 

The demonstration of population-based search approaches (Monte Carlo Uniform 
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Random Search) were verified to be powerful for large distributed models. This was 

particularly evident when studying the interactions or correlations between parameters, 

which are usually ignored by traditional estimation schemes.  

(3) Achieving a robust framework by consideration of trade-off quantification 

and subjective selection of likelihood: the qualitative information that directly considers 

uncertainty improves methods for communicating model results and uncertainty to 

decision-makers in applied hydro-sciences. 

(4) Temporal variability of parameters: The analysis was extended to study 

varying hydrologic behavior through time series to investigate the influence of parameter 

temporal variability. The resulting methods can be implemented to improve selection of 

proper model structure, hydrograph segmentation, and tradeoff objective functions. 

(5) Generation of a MATLAB script package: The methods and scripts 

generated for this work within the MATLAB programming platform have been combined 

into a runtime package. This work will be distributed and can be applied to a wide range 

of analysis related to climate change, wildfire affects, and other scenarios which require 

uncertainty outputs. 

1.5 Outline of the Dissertation 

The research presented in this dissertation demonstrates a novel framework of 

model estimation and uncertainty quantification in order to address the accuracy and 

efficiency of complex, distributed hydrologic models. The research provides progress 

towards improved evaluation of large-scale hydrologic systems. This first chapter 
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described general background and motivation for the work. The second chapter 

introduces and illustrates the framework and provides a case study titled: Parameter 

sensitivity and dynamic identifiability within a spatially distributed framework for large-

scale hydrologic modeling: case study for the Gila River basin. 

The third chapter addresses the issues of qualitative information based on the 

outputs described in Chapter 2. Chapter 3 is titled Integrated multi-criteria estimation 

under parameter uncertainty quantification for large scale distributed hydrology model. 

An overall summary of this research and recommendations for future work are provided 

in Chapter 4. 
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Table 1–1  VIC model primary components 

Processes Governing 
model Governing equations Calibrated 

parameters 
Parameter 
meanings Notes 

Water 
balance Bucket model 𝜕𝑆

𝜕𝑡
= 𝑃 − 𝐸 − 𝑅   It is continuous equation 

for each time-step 

Evapotran
spiration 

Canopy 
evaporation-

Penman-
Monteith 
equation 

(Shuttleworth, 
1993) 

𝜆𝑣𝐸𝑝 =
Δ(𝑅𝑛 − 𝐺) + 𝜌𝑎𝐶𝑝(𝑒𝑠 − 𝑒𝑎)/𝑟𝑎

Δ + Υ
    

Vegetation 
transpiration 

(Blondin, 
1991; 

Ducoudre et 
al., 1993) 

𝐸𝑖 = (1 − (
𝑊𝑖

𝑊𝑖𝑚
)2/3)𝐸𝑝

𝑟𝑤
𝑟𝑤 + 𝑟𝑜 + 𝑟𝑐

 

 
Where,𝑟𝑐 = 𝑟0𝑐𝑔𝑇𝑔𝑣𝑝𝑑𝑔𝑃𝐴𝑅𝑔𝑠𝑚

𝐿𝐴𝐼
 

   

Infiltration 

Infiltration 
capacity 

(Zhao et al., 
1980) 

𝑖 = 𝑖𝑚[1 − (1 − 𝐴)1/𝑏] b 
Infiltration 

shape 
parameter 

Infiltration capacity as a 
function of relative 
saturated gridcell area. 
Higher value gives 
lower infiltration. 

Overland 
flow 

St. Venant 
equation 

𝜕ℎ
𝜕𝑡

+
𝜕(𝑢ℎ)
𝜕𝑥

+
𝜕(𝑣ℎ)
𝜕𝑦

= 𝑞    
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Table 1-1  VIC model components (Cont’d) 

 

Unsaturate 
flow 

One-
dimensional

Richard 
equation 

𝜕𝜃
𝜕𝑡

=
𝜕
𝜕𝑧
�𝐷(𝜃)

𝜕𝜃
𝜕𝑧
� +

𝜕𝐾(𝜃)
𝜕𝑧

    

Base flow 

Arno model 
formulation 
(Franchini 

and Pacciani, 
1991) 

𝑄𝑏 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝐷𝑠𝐷𝑚
𝑊𝑠𝜃𝑠

∙ 𝜃3, 0 ≤ 𝜃3 ≤ 𝑊𝑠𝜃𝑠
𝐷𝑠𝐷𝑚
𝑊𝑠𝜃𝑠

∙ 𝜃3 +

(𝐷𝑚 −
𝐷𝑠𝐷𝑚
𝑊𝑠

)(
𝜃3 −𝑊𝑠𝜃𝑠
𝜃𝑠 −𝑊𝑠𝜃𝑠

)2

 𝑤ℎ𝑒𝑛 𝜃3 ≥ 𝑊𝑠𝜃𝑠

� 

 

Ws 

The fraction 
of maximum 
soil moisture 
where non-

linear 
baseflow 
occurs. 

A higher value of Ws 
will raise the water 
content required for 

rapidly increasing, non-
linear baseflow. 

Ds 

The fraction 
of Dsmax 

where non-
linear 

baseflow 
begins. 

A higher value of Ds, 
the baseflow will be 
higher at lower water 
content in the lowest 

soil layer. 

Dsmax 

The 
maximum 

baseflow that 
occur from 

the lowest soil 
layer. 

It depends on hydraulic 
conductivity. 

Channel 
routing 

St. Venant 
equation 

𝜕ℎ
𝜕𝑡

+
𝜕(𝑢ℎ)
𝜕𝑥

= 𝑞    

 

14 
 



www.manaraa.com

 

 

 
  

Figure 1–1 Parameter properties with identified and non identified output. (x-axis 

represents the feasible parameter range; y-axis represents selected objective 

function or simply means the errors between modeled and observed hydrologic 

behavior) 
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Chapter 2   Parameter Sensitivity and Dynamic Identifiability 

Analysis within a Spatially Distributed Framework for 

Large Scale Hydrologic Modeling:                                     

Case Study for the Gila River Basin  

 

2.1 Introduction 

Hydrologic models provide an important translator function between 

meteorological, landscape, and subsurface processes (Gelhar, 1986; Beven, 1989; Wood, 

1991; Liang et al., 1994; Arnold et al., 1998; Singh et al., 2002; Bloschl 2006; Gassman 

et al., 2007; Beven et al., 2012). Current models hold great potential for advancing 

understanding of complex physical processes across watersheds (Wood et al., 1992, 1997; 

Koster et al., 2000; Beven, 2001; Nijssen et al., 2001; Yao et al., 2001; Sivapalan, 2005). 

With the coexistence of deterministic and stochastic hydrological processes, a wide range 

of models using various formulations of underlying hydrologic processes are now 

available and widely implemented (Mo et al., 1997; Kochendorfer et al., 2005; Andreadis 

et al., 2006).  

Physically-based distributed hydrologic models are often favored over more 

empirical approaches due to their ability to better represent underlying theory (Refsgaard 
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et al., 1996; Boyle et al., 2001). Such models consist of a variety of function categories, 

which are parameterized to represent the target physical systems through state variable 

responses (Refsgaard, 1997). Many advantages and disadvantages arise as a result of 

these approaches. As models have become more sophisticated and complex, our ability to 

accurately simulate certain physical processes has also grown (Beven, 2006; Schulz et al., 

2006; McDonnell et al., 2007; Torch, et al., 2009). However, these advancements have 

increased the number of required model parameters; accordingly, the calibration scheme 

has grown in complexity and requires greater computer power (Duan et al., 2003; Cui et 

al., 2005; McCloskey et al., 2011; Ray et al., 2012). For example, spatial heterogeneity of 

rainfall-runoff processes can be investigated using distributed hydrologic models (Liang 

et al., 1994, 1996). Numerous studies have investigated approaches for specifying 

spatially explicit parameters within distributed models (Hundecha et al., 2004; Panday et 

al., 2004; Vrugt et al., 2005; McDonnell et al., 2007; Meins, 2013; Euser et al., 2014). 

However, the confounding interactions between spatially and temporally varying 

parameter identification remains a vexing problem. The objective of this study is to 

propose and demonstrate a framework for investigating parameter sensitivity in both 

spatial and temporal dimensions in order to reduce over-parameterization and increase 

computational efficiency.  

2.2 Background 

The increased complexity and parameter dimensionality of hydrologic models 

introduces significant challenges to traditional calibration methods by considering 

interactions between physical processes and parameters (Bastideas, 1999). Taking into 
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account the parameterization of modes to represent surface and subsurface dynamics for 

hydro-model descriptions, parameters are generally implemented into two types: (1) 

conceptual parameters which should be investigated through calibration; and (2) 

physical-based parameters which are based on knowledge of hydrologic process. These 

two types create big challenges to estimation scheme induced from either the inherent 

uncertainty in properties or uncertainty stems from parameter interaction or correlation. 

In traditional application of models, it is common to employ sensitivity analyses, 

calibration, and validation to pursue optimal model performance (Refsgaard,1996, 1997). 

By varying an input parameter value, the modeler can quantify the sensitivity of the 

output response and thus identify which parameters required the greatest attention. Few 

studies include more advanced analyses to investigate parameter interactions within 

sensitivity analyses. However, recent studies have focused on advancing parameter 

selection and the techniques have grown to be powerful to account for the evaluation of 

complex physical processes in the watershed, especially to insufficient information 

regions, including improving model properties, discretizing parameter categories, and 

capturing statistical input distributions (Abdulla et al., 1997; Liang et al., 2003; 

McDonnell et al., 2004; Wagener et al., 2007; Zeug et al., 2007; Muleta, 2007).  

Improvements in model calibration have adopted reductions in the number of 

parameters caused by over-parameterization (Pokhrel et al., 2008; Schoups et al., 2008; 

Whittaker et al., 2010). Over-parameterization can result in misinterpretation of model 

performance by achieving model “fit” while improperly representing underlying 

processes (Schwarz, 1978; O’Connell, 1990, 1998;). Although personal computers and 

workstations have grown tremendously in power in recent years, computational 
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efficiency remains an important consideration when simulating large domain or working 

within a stochastic framework. 

In most practical cases, distributed hydrologic models are considered to better 

represent the spatial heterogeneity of hydrologic processes and model parameters across a 

watershed – particularly for large scale simulations (Beven, 1996). Distributed 

approaches allow the modeler to represent small-scales physics at the grid-cell or sub-

watershed scale with a specific resolution that is appropriate for the process and 

parameter heterogeneity (Beven, 1989). The application of distributed models has had far 

reaching implications for regional-scale physical processes such as investigations of 

climate change impacts (Richard, 2002; Christensen and Lettenmaier, 2006 ). The 

parameters are directly selected through relationship from soil properties and topography 

(Wagener, 2007; Brown et al., 2005; Samuel et al., 2011), hence reducing the number of 

conceptual parameters and decreasing the extent of uncertainty. However, these 

approaches require significant data and computational resources when applied to large-

scale investigations (Shrestha et al., 2006). 

Another important consideration of model parameters is that they are not only 

spatially variable, but they also have a dynamic response with time (Wagener et al., 

2002b; Singh et al., 2008). This has often been addressed in previous studies by simply 

considering the scenario study or digital computation within geographic information 

systems (Miller et al., 2007). However, the time-dependent nature of parameter 

sensitivity and performance goes beyond physical meanings but also to be calibrated 

parameters with unstatic properties. That is, parameter sensitivity can vary across the 

temporal domain due to underlying physical processes such as a heavy rain event or a 
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drought – even within a given season. For example, NOAA adopts an ensemble method 

to statistically analyze extreme events in historical records (Hamill et al., 2013). Wagener 

et al. (2001) suggests the application of specific model structures to highlight streamflow 

simulations by partitioned hydrograph into quick and slow flows. Hence, to detect model 

performance, the modeler should not only consider process and parameter heterogeneity 

in space but also dynamic changes in time. 

In this research, we propose a novel approach for investigating parameter 

sensitivity and identifiability (defined in Chapter 1) across both spatial and temporal 

domains to reduce over-parameterization and computational resources for large-scale 

simulations. The framework is demonstrated through application of the Variable 

Infiltration Capacity (VIC) model (Liang et al., 1994, 2003; Lohmann, et al., 1996) to the 

Gila River Basin in the southwest United States. Further, the proposed approach includes 

a mechanism for segregating the simulation domain into sub-regions based on prevailing 

climatological conditions (e.g. aridity). The framework was applied to address the 

following two questions: (1) Is parameterization and complexity of parameter 

representation variable across climatological conditions? and (2) Can temporal variability 

of parameter sensitivity and identifiability be characterized across a simulated time series? 

2.3 Methods 

2.3.1 Framework Overview 

The following steps were completed to investigate the research questions. First, 

the VIC model was developed for the study region and a traditional calibration approach 

was applied to investigate model performance based on status-quo techniques. The 
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calibration was applied for three subbasins categorized by climatological condition 

(aridity).  Second, a parameter sensitivity and identifiability analysis was completed for 

each subbasin in order to investigate the influence of climatological conditions on these 

procedures. Finally, the temporal nature of parameter sensitivity and identifiability was 

studied over a simulated time-series for each subbasin. Each step is expanded upon in the 

following sections.   

2.3.2 Hydrological Model 

The VIC model is a large-scale, semi-distributed hydrologic model (Liang et al., 

1996; Liang et al., 2003; Lohmann, et al., 1996 ) that has been widely applied over the 

past decade to study climate change and other hydrologic questions (e.g. Matheussen and 

Lettenmaier et al., 2000; Liang, et al., 1994; Abdulla et al., 1996; Nijssen et al., 1997; 

Nijssen et al., 2001; Payne et al., 2004; Christensen et al, 2004; Vano et al., 2010).  The 

model is spatially distributed based on a grid cell framework and can be applied under 

different scale resolutions. Its underlying approach is based on the principle of a “water 

balance”. VIC is driven by daily inputs of precipitation, maximum and minimum air 

temperature, and wind speed. Additional model forcing data such as solar radiation, 

relative humidity, vapor pressure and vapor pressure deficit, are calculated in a 

preprocessing step within the model (Elsner et al., CIG report 2010). 

For this study, the VIC model was implemented at a 1/8 degree latitude by 1/8 

degree longitude resolution across the Gila River basin (Figure 2-2). Three subbasins 

were selected in order to investigate the influence of climatological conditions on 

parameter sensitivity and identifiability. The subbasins were identified based on their 

Dryness Index (DI) (Atkinson 2002), and included the Salt River Basin (wettest and 81 
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grids are included due to adopted resolution), Upper Gila River Basin (drier and 46 grids 

are included due to adopted resolution), and San Pedro River Basin (driest and 34 grids 

are included due to adopted resolution) (Table 2-1). The model was driven by observed 

meteorological data including daily precipitation, maximum and minimum temperature 

and wind speed. The data sets were selected from Maurer et al. (2002) and calibration 

was performed in 3-hrs time step with monthly outputs for analysis. 

The model was parameterized using a modeling framework of three soil layers. 

The distribution of water through the three soil layers was allocated based on water flux 

and storage (evapotranspiration, runoff, baseflow, soil moisture, etc). Soil layer 

parameterization captured heterogeneous characteristics of the geology, soil types, 

topography, and vegetation. Five parameters were investigated for calibration: b, Ds, 

Dsmax, Ws, d1, d2. The parameters are defined in Table 2-2. 

2.3.3 Objective Function 

The Nash-Sutcliffe Efficiency (NSE) is a common optimization function (OF) 

for evaluating hydrologic model performance as a measure of how well streamflow is 

represented as follows: 

NSE=1-∑(𝑄𝑜𝑏𝑠−𝑄𝑠𝑖𝑚)2

∑(𝑄𝑜𝑏𝑠−𝑄�𝑜𝑏𝑠)2
        (Eq. 2–1) 

Where 𝑄𝑜𝑏𝑠and 𝑄𝑠𝑖𝑚are the observed and simulated streamflow, respectively; 

𝑄�𝑜𝑏𝑠is the mean value of 𝑄𝑜𝑏𝑠 (Nash and Sutcliffe 1970). NSE can range from -∞ to 1. 

An efficiency of 1 corresponds to a perfect match of simulated streamflow to the 

observed data. The further NSE departs from 1, the worse the model performance is 

considered. For more intuitive visualization, the NSE is transformed in this study as 1-
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NSE and thus the resulting scale is from 0 to +∞, where 0 represents best performance 

(no error) and higher values represent poor performance. 

2.3.4 Sensitivity Analysis Approach 

The sensitivity analysis was applied using the VIC model based on sub-grids 

and an evaluation of the model performance using a Uniform Random Search (URS) 

scheme. The URS was applied under different sets of parameters within a Monte Carlo 

(MC) framework; not a unique global optimum parameter set for the entire watershed as 

is traditionally applied with this type of exercise. Finally, a Regional Sensitivity Analysis 

(RSA) was combined with an improved Dynamic Identifiability Analysis (DYNIA) to 

quantify the variability of parameters and model sensitivity both spatially and temporally. 

The URS approach was applied to estimate the parameter sensitivities in the 

VIC model based on the three climatic regions (wet, dry, and intermediate). The upper 

and lower bounds of the parameter space were initially selected based on prior 

knowledge, field measurements, or literature review (Meyer et al., 2007) as the basis of 

Monte Carlo sampling.  A uniform prior distribution was then applied to investigate data 

outliers (Table2-2). 

The RSA method (Spear and Hornberger, 1980; Freer et al. 1996; Wagener et al., 

2003a) was used to measure the sensitivity of the individual parameters with respect to 

the specific OF. The RSA approach can retrieve the information from a cumulative 

distribution for each analyzed parameter. It works on the feasible parameter space, which 

is created from the Monte Carlo URS results (Rose et al., 1991). The original RSA can 

simply separate the parameter population into two groups: behavioral and non-behavioral 

parameters. Based on the improved RSA approach proposed by Freer et al. (1996), the 
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parameter space was split into 10 groups of equal size, ranked by their OF values. The 

cumulative distributions for each group were then plotted for investigation. The 

differences among the distributions by slope show the extent of parameter sensitivity 

where steep slopes represent higher sensitivity. The results also can be used to visually 

evaluate the identifiability of a given parameter. Because the cumulative sum of a 

uniform distribution is a straight line, departure from a straight line represents a higher 

degree of identifiability in that region. 

Theoretically, any parameter with a physical meaning that is parameterized to 

represent the underlying system should be both sensitivity and identifiable. A lack of 

these characteristics represents a failure of parameterization. To resolve this problem, the 

DYNIA method was adopted to identify periods of high and low identifiability of model 

parameterization in time series. The procedures was applied through the following six 

steps: (1) build the feasible parameter space through a Monte Carlo URS framework with 

a single OF; (2) select the optimal parameter sets under a defined threshold (e.g., the best 

top 20%); (3) sort the posterior parameters equally sized groups (e.g. ten groups) based 

on the OF; (4) draw the cumulative distribution curves for each group; (5) calculate the 

identifiability based on the RSA method for each curve; (6) plot the results as a colored 

grid over a time series.  

2.4 Case Study 

2.4.1 Research Domain 

The Gila River drains approximately 160,000 km2 of southwestern New Mexico 

and southern Arizona within a mostly arid watershed. The watershed experienced 
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significant human development in the 20th Century – particularly in the form of water 

diversions for urban and agricultural use along with construction of flood control 

structures. The degree of hydrologic alterations present in watersheds like the Gila 

present another major challenge for development and calibration of hydrologic models. In 

order to minimize the impacts of diversions on our study results, simulations were 

conducted on watersheds located above USGS stream gages 09498500 (Salt River), 

09430500 (Upper Gila River), and 09471000 (San Pedro River) which are all located 

upstream from major reservoirs or diversion projects and that represent relatively natural 

flows. 

The characteristic of the three subbasins are summarized in Table 2-1 and their 

locations are shown in Figure 2-2. Dryness Index (DI) represents a ratio between 

potential evaporation and precipitation (reference) and can be used as a simple indicator 

of the local physical environment. A higher DI value represents a more arid catchment. 

Based on the dryness index, the Salt River basin is the wettest, the San Pedro River basin 

is dry, and the Upper Gila River basin is intermediate. 

2.4.2 Results 

2.4.2.1 Baseline – Traditional Calibration 

Figure 2-3, Figure 2-4 and Figure 2-5 demonstrate the model performance based 

on simulated vs. observed streamflow for the three subbasins using a traditional 

calibration method.  As traditional calibration method procedure, the first 6 years 

(1975.1.1-1980.12.31) were used as a warm-up period and the simulation process 

spanned the next 20 years (1981.1.1-2000.12.31). The calibration approach involved first 

defining the objective function and then adjusting input parameters to minimize error 
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over the entire time series. The calibration approach can be adjusted based on different 

periods in the time series and different time scales. Here, all six calibration parameters 

were adjointly adjusted to find the best model performance while considering parameter 

interactions. This was accomplished using a Monte Carlo Uniform Random Search 

(MCURS) method to reach the global minimum errors between simulated and observed 

hydrological behavior. Plots (a) in each figure show the best model simulations through 

selected time series. To be clear a visual simulation of the runoff volume with respect to 

selected objective function, the bias plot was shown in (c) within each figure. The extent 

of model performance works pretty well in wetter regions, comparing to the higher bias 

in drier regions with much worse simulations. During the low yielding time period, base 

flow is the dominate component during modeled simulations with minor errors which are 

shown in plot (b) of the Figure 2-3, 2-4 and 2-5. 

Figure 2-6 shows a selected class of simulations accomplished by tuning all 6 

calibration parameters at the same time based on the NSE objective function. In avoid to 

embed information due to input spread variance, we categorized the random simulations 

as equal ten groups based on rank of performance instead of good or bad criteria. Select 

the best performance or reasonable mimics to physical reality as representation to group a 

class of time series simulations. The bounds of “cluster” could be an indicator of 

uncertainty or effectiveness. The best performance produced a NSE value of 0.8 in the 

Salt River basin with lower variance compared to other two river basins where a 

maximum NSE of 0.4 was achieved. It creates significantly perturbations for model 

performance with respect to catchment system through broad spatial domain. The 
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parameterization should have varying level of complexity or effectiveness across 

climatological conditions. 

In summary from Figure 2-3, 2-4, 2-5 and 2-6, the parameters that are calibrated 

to perform model evaluations can create substantial bias. It shows that there are 

significant errors between observed and modeled streamflow and varies extent of bias 

based on climate conditions. The wetter region (Salt River basin) performs better than the 

drier region (San Pedro River basin) with a larger forecast streamflow. In the low-

yielding catchments (such as San Pedro River basin) with many zero flow days, it can not 

provide enough information related to the region’s soil moisture status, so that there is a 

lack of effective mechanism to simulate baseflow and ET. This is the potential reason for 

bias (Nijssen et al., 1997; Abdulla and Lettenmaier, 1997; and Wooldridge et al., 2003). 

Thus, the capability of hydrologic models can potentially build a relationship to the 

climate scenarios (such as arid index) by selected interaction parameters. These forecast 

biases could be corrected by uncertainty quantification. This represents a potential 

mechanism to reduce the bias by parameter selections. 

2.4.2.2 Parameter Sensitivity and Identifiability Analysis  

The modified RSA approach was used to identify the sensitivity of the different 

parameters and to evaluate their relative importance with respect to model behavior. The 

degree to which the models are sensitive to each parameter can be visualized and the 

results can then be used to eliminate those that are insensitive and to identify sensitive 

parameters to focus on for future uncertain analyses. A uniform distribution was assumed 

for the prior distributions to the Pareto sets. The applications of those methods and 
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outcomes are achieved by using the toolbox MCAT (Monte Carlo Analysis Toolbox), 

which was created by Thorsten Wagener et al. and my building of MATLAB scripts. 

The RSA results are shown in Figures 2-7 a, b, and c for each of the climatic 

regions in the form of a cumulative OF distribution. With non-behavioral parameters, the 

cumulative distribution will approximate a diagonal line. Hence, the extent of parameter 

sensitivity to model behavior is represented by deviation of the cumulative curves away 

from the diagonal line. The color of the lines represent the binned performing sets with 

the best performing parameter sets displayed in pink and the worst performers in light 

blue. Through visual inspection of each of the six parameters over the three subbasins, 

the most and least sensitive parameters can be identified. d1 was found to be the least 

sensitivity parameter and it can be classified as over-parameterization because its value 

does not impact model response. Demaria and Wagener et al. (2007) also concluded that 

the base flow component is typically over-parameterized for water balance systems using 

a daily time step. The most sensitive parameters included b, Ws and d2. The results of the 

RSA produced curves reveal that model more accurately captures observed conditions 

under wetter conditions (Salt River) than for the other two regions.  

Figures 2-8 a, b, and c are scatterplot representations of the Monte Carlo URS 

simulations and can be used to evaluate identifiability of the selected model parameter 

sets based on different climatic regions. The pink diamond designates the “best” optimal 

value in searching the feasible parameter space. Considering the non-uniqueness of 

parameter sets, the optimal solution sets through the range of potential parameter values 

can be investigated visually. The parameters are considered identifiable when one or 

more solution set performs well based on the selection criteria. Based on Figures 2-8 a, b, 
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and c, it is observed that the model parameters b, Ws, and d2 are identified with a critical 

minimum value among the scatter points based on the OF. Conversely, parameters 

parameter Ds and D are considered non-identified because no significant optimal sets 

over the range of parameter values were identified. The results also reveal that the 

parameter identifiability in the wet region (Salt River basin) was lower than in the drier 

regions (San Pedro River basin and Upper Gila River basin). 

The changes in model parameter identifiability based on climate regions 

described above can be evaluated based on the physical interpretation of the model 

parameters. Parameter b defines the shape of the Variable Infiltration Capacity curve. It 

describes the amount of available infiltration capacity as a function of relative saturated 

grid cell area. In other words, it separates the infiltration and direct runoff. With a higher 

value of b, the model yields higher surface runoff and lower infiltration. In Figure 2-8, 

parameter b is highly identifiable for the two dry basins and the minimum criteria values 

can be used to identify an optimal parameter space. On the other hand, b is poorly 

identified within the wet basin and the optimal sets are widely distributed over the 

feasible parameter space.  

The parameter Ds and Ws are both related to the drainage component. For 

example, Ws is the fraction of the maximum soil moisture (of the lowest soil layer) where 

non-linear baseflow occurs. A higher value of Ws will raise the water content required for 

rapidly increasing, non-linear baseflow. In other words, with a smaller value of Ws, the 

baseflow generation will increase and eventually it will contribute to total runoff. 

However, under dry conditions little runoff is generated and instead evaporation without 

drainage will dominate. In the wet condition, the third layer is more likely to experience 
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infiltration which will contribute to total runoff through increased baseflow. That is why 

the lowest boundary layer as expressed through Ws moves left when the region becomes 

wetter.  

Parameter d2 represents the baseflow component. Spectrum has specific 

meaning in time series analysis in the Salt River basin as compared to the other two 

subbasins (Figure 2-8). Accordingly, Figure 2-8 b and c reveal a much broader extent of 

data spread nearly evenly through all the parameter space, which is different from the 

parabolic curve observed for the Salt River basin. Thus the d2 parameter was over 

predicted by streamflow in drier areas. Conversely in the dry areas, d2 could be seen as 

insensitive, but with respect to the specific hydrologic behavior – streamflow, it will be a 

calibration parameter to improve model performance; especially to the lower values. This 

provides a potential explanation for better model performance for the Salt River Basin as 

shown in Figure 2-3. 

The case study can be used to identify when it is necessary to categorize the 

model parameters as distributed (identified) or lumped (non-identified) parameter types. 

Here we conclude that parameters b, Ws and d2 should be represented as distributed 

parameters and Ds and Dsmax should be lumped. Based on selected simulation behavior, d2 

is identified as a key parameter for improving model performance. 

2.4.2.3 Dynamic Identifiability Analysis 

The degree to which parameter identifiability varies through the simulated time 

domain was investigated using a Dynamic Identifiability Analysis (DYNIA),  shown here 

in Figures 2-9 a, b, and c. They demonstrate the nature of the DYNIA based on 

parameters b and d2. The plots reveal the quantitative relation between hydrologic 
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characteristics (e.g. high flows) and the parameterization characteristics for each of the 

subbasins. The grey shading indicates the degree of identifiability for the parameter at the 

designated time step and parameter value. A darker color represents higher identifiability. 

The results reveal marked variation in the of parameter identifiability between low flow 

and high flow conditions and as a function of aridity condition. 

By comparing DYNIA results across the three subbasins, it is clear that 

parameter identifiability is dynamic and related to the aridity. Wide confidence limits 

were observed for the Salt River basin, which indicates that the range of parameters that 

produce an equivalent OF are widely distributed through the parameter space. In contrast, 

the San Pedro and Upper Gila subbasins revealed relatively narrow confidence limits. 

Thus the region of parameter space producing high-performing results are concentrated in 

a small space range. Thus, attention should be paid to calibration of the VIC model under 

the wetter conditions because greater uncertainties are present.  

The primary motivation behind the DYNIA was to evaluate whether parameter 

space changes dynamically over the course of the simulation period in response to 

shifting meteorological and hydrological conditions. If they do exist, such dynamic 

variations would represent a departure from the status-quo approach of time-consistent 

parameterization. First, we investigate parameter b and observe less consistency in 

identifiability for the lower value range for the Salt River subbasin as compared to the 

Upper Gila and San Pedro subbasins. Therefore, it is justified to simulate hydrologic 

characteristics within a climatic domain.  

Next, it is observed that there are two shifts in the range of optimal values within 

the Salt River; both associated with wet periods in the streamflow record (around time 
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step 30-50 and 115-150). During these periods, there is a marked shift in the identified 

parameter space towards larger values. Likewise, identifiability drops within lower 

parameter space at these same points. These distinct shifts with respect to the 

identifiability range highlights the inadequacies and inflexibility of typical model 

structure components. A more adaptable variable parameterization process based on 

dynamic watershed conditions as a function of time could provide an improved modeling 

framework.  

Another limitation of static model parameterization is revealed through the 

temporal nature of the parameterization confidence limits. For example, consider time 

steps 135-155 on the Salt River simulation results. At this point, the confidence limits 

expand during the occurrence of a large flow event. This behavior reveals that simulation 

results are highly uncertain during this extreme flow event. Such behavior could be 

addressed by considering an alternative OF to improve identifiability or by calibrating the 

model specifically for this sub-period of the modeling time domain (Gharari et al., 2013). 

Similarly, the parameter d2 shows a distinct area of identifiability by lining up 

the upper section of the feasible parameter space with narrow confidence limits within 

the San Pedro subbasin, which is in contrast to conditions observed in the Salt River 

subbasin. 

2.5 Discussion and Conclusion 

Hydrologic models have grown in complexity and sophistication over the past 

several decades. High performance computers and advanced GIS capabilities have led to 

great advancements in hydrologic modeling approaches. Large scale hydrologic studies 
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are now commonplace and at the same time becoming more sophisticated through 

improved understanding of model behavior. With the coexistence of deterministic and 

stochastic hydrological processes, the growing complexity of models is accompanied 

with a high degree of parameter uncertainty. The framework presented here (Figure 2-1) 

for evaluating parameter uncertainty and sensitivity takes into consideration both basin 

characteristics (climatological condition) and temporal variation in parameter 

identifiability. The method can also result in reduced computational demand, which can 

improve the efficiency of running uncertainty analyses.  

In this study, a novel approach has been proposed for evaluating parameter 

uncertainty that takes into account basin-wide variability, cross-subbasin variability, and 

temporally based (dynamic) uncertainty based on aridity. The goal of this framework is to 

consider the spatial and temporal heterogeneity of physical properties and processes in 

order to optimize model performance and computational efficiency. With a thorough 

analysis and case study in the Gila River basin, this model is demonstrated as a robust 

and flexible approach for improving hydrologic simulation efficiency.  

Although the framework can consider the condition where lumped models are 

used, the main point of this framework is to address spatial heterogeneity within 

distributed models. As applied using the VIC model, uncertainty arises through the 

spatial distribution from: grid interpolation of rainfall; spatial probability distributions of 

dynamic soil moisture storage capacity; elevation bands for representation of topographic 

variability; and spatial geomorphic and vegetation conditions.  

The first research question addressed through the proposed and demonstrated 

framework was whether parameter sensitivity and identifiability vary across 
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climatological conditions? Based on the analysis results presented in Figures 2-7 and 2-8, 

there is a clear argument that the application of climatic-based subbasins can improve 

parameter sensitivity and identifiability. By selecting subbasins based on a dryness index 

within the Gila River basin, the variable behavior of parameters directly pointed to their 

physical meanings. Parameters b, Ws and d2, which relate to drainage and baseflow 

components, show good identifiability in the drier basin. However, the parameters were 

not well identified in the wetter Salt River basin. This result verified what was observed 

in the baseline simulation calibrations where better model performance was involved in 

the Salt River Basin and worse performance was observed in the drier San Pedro and 

Upper Gila Basins. This result was consistent with Abdulla and Lettenmaier (1997) who 

also pointed to better VIC performance in humid catchments than dry ones using regional 

parameters.   

The study results also revealed that parameter d1 was over-parameterized and 

thus dimensionality can be reduced by setting it to a constant value. A similar conclusion 

was drawn by Demaria and Wagener et al. (2007). Again, this result can be explained 

through the physical interpretation of the parameter and the processes that dominate the 

watershed. To insure consistency in the mathematical formulation when evaporation is 

evaluated under extremely dry conditions, the VIC model evaluates the top thin layer 

which is typically set to 10 cm thick. Here we conclude that adding additional complexity 

in this term via spatial variability does not improve model performance.  

The improved accuracy of model predictions through additional model 

complexity and parameterization comes at the cost of increasing model uncertainty. By 

incorporating both sensitivity and identifiability analyses, the modeler can extract clues 
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about the role of climatic conditions on influencing the importance of spatially distributed 

parameters. This allows the modeler to identifying which parameters are best defined as 

lumped or distributed based on parameter identifiability. Insensitive parameters suggest 

less dependence for achieving good model performance but also result in high model 

uncertainty. For example we conclude that parameters Ds and Dsmax can be calibrated 

on a lumped basis for the study region. Evaluation on a distributed basis will not improve 

model performance but will increase the computational load. This is an important 

consideration when undertaking uncertainty analyses that require thousands of 

simulations.  

The second research question aimed to evaluate if temporal variability of 

parameter sensitivity and identifiability can be characterized across a simulated time 

series? This question was investigated through the evaluation of the parameter dynamic 

analysis in order to estimate the variability in time-series simulation. Strong evidence was 

provided to suggest that temporal variability could indeed be characterized. For example, 

the parameter b clearly exhibited a different extent of sensitivity during different 

prevailing hydrologic condition. During low flow periods, the parameter b showed a high 

degree of identifiability over low b values. Conversely, high identifiability of b was 

observed for high values when flows were high. The dynamic variability of parameters 

leading tied to flow regimes has been observed with the SWAT model (Cibin et al. 2010). 

This result indicates the traditional calibration method with a single optimal value 

simulation will not satisfy the inherent dynamic nature of hydrologic processes. 

The framework that was proposed and demonstrated here aimed to 

comprehensively evaluate the roles of spatial and temporal heterogeneity model 
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parameters and their contribution to model performance and uncertainty. The results 

revealed that the spatial and temporal identifiability can be used to identify which 

parameters should be spatially lumped or set as time-constant in order to optimize model 

performance and computational demand. Further, the novel approach of characterizing 

subbasins by climatological conditions to further study parameter identifiability proved to 

be a useful construct. The resulting framework represents an objective and flexible 

approach to improve the process of evaluating parameter sensitivity and uncertainty.  

The contribution of this framework includes: (1) The application of a climatic-

based parameter evaluation scheme can reduce the level of model complexity with 

respect to the assignment of spatially varying parameters. The case-study in the Gila 

River basin demonstrated the connections between this approach and the physical 

interpretation of the model parameters. (2) The dynamic identification of temporally 

varying model parameters revealed high variability of parameters across the time series. 

This result highlights the inadequacy of the standard modeling approach and can be used 

to balance tradeoffs associated with a multi-model framework (e.g. including fast and 

slow processes). (3) The framework allows for more scientifically defined assignment of 

the initial feasible parameter space for prior distributions as compared to the standard 

approach that includes more subjective selections. (4) The framework allows for a visual 

examination of performance and identifiability that is a flexible approach for achieving 

calibration. 
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Table 2–1  Selected basins for study domain 

Sub-basins Salt River Upper Gila River San Pedro River 

Streamgauge (USGS) 09498500 09430500 09471000 

Location 
33°37’10’’ 

110°55’15’’ 

33°03’42’’ 

108°32’15’’ 

31°37’33’’ 

110°10’26’’ 

Drainage Areas (km2) 11152 4828 3196 

Dryness Index DI=Ep/P 0.8 1.1 1.16 

Defined Wettest Drier Driest 

 

Table 2–2  Six parameters of VIC model for calibration and uncertainty analysis 

Parameter Range Unit Description 

b 0.001-0.8 N/A Define variable infiltration curve shape 

Ds 0.001-0.2 N/A Fraction of Dsmax where non-linear baseflow begins 

Dsmax 0-30 mm/day Maximum velocity of baseflow 

Ws 0.001-1 N/A 
Fraction of maximum soil moisture where non-linear 

baseflow occurs 

d1 0.05-0.35 m Soil depth of the first soil layer 

d2 0.1-1 m Soil depth of the second soil layer 
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Figure 2–1  A flow chart for the new framework of parameter estimation for 

distributed large scale hydrologic model 
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Figure 2–2  Research domain on the Gila River basin (The blank contour represents 

the Gila river domain, the color section with purple, green and yellow represents the 

three subbasins, Salt River basin, Upper Gila River basin and San Pedro River 

basin; the red triangular remarks the streamgauge for calibration discharge with 

USGS measurement for each subbasin.) 
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Figure 2–3  Model performance for Salt River basin. (a)  Baseline simulations based 

on comparison of time-series monthly streamflow (1981.1 -2000.12) by observed 

(blue line) vs. model calculated (purple dash line) as traditional optimal calibration 

scheme (with good matching especially on extreme flow). (b) Errors plot on each 

time step. (c) Modeled vs observed streamflow. It visually shows a bias estimation on 

this region. 
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Figure 2–4  Model performance for San Pedro River basin. (a) Baseline simulations 

based on comparison of time-series monthly streamflow (1981.1-2000.12) by 

observed (blue line) vs. model calculated (green dash line) as traditional optimal 

calibration scheme (worse mimic on extreme flow). (b) Create errors plot on each 

time step. (c) Modeled vs. observed streamflow. It visually shows a bias estimation 

on this region. 
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Figure 2–5  Model performance for Upper Gila River basin. (a) Baseline simulations 

based on comparison of time-series monthly streamflow (1981.1-2000.12) by 

observed (blue line) vs. model calculated (yellow dash line) as traditional optimal 

calibration scheme. (b) Create errors plot on each time step. (c) Modeled vs. 

observed streamflow. It visually shows a bias estimation on this region. 
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Figure 2–6  Model performance with a class of outputs based on time-series 

streamflow simulations for each subbasin (more detail description).  The color bar 

shows likelihoods to each simulations based on criteria function which given higher 

values with good simulation performance and lower values with bad performance. 

(a) Salt River basin; (b) San Pedro River basin; (c) Upper Gila River basin. 
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(c) 

 
 

 

 

Figure 2–7  Parameter Sensitivity analysis for each basin. All of these global-

population random simulations are divided into equal ten groups based on the 

ranking of objective functions. The nomalised cumulative distribution is calculated 

for each group with attained a higher value as better performing model simulations. 

(a) Salt River basin; (b) San Pedro River basin; (c) Upper Gila River basin 
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(c) 

 

 

Figure 2–8  Scatter plots for parameter sets based on model performance. (It is the 

outputs from Monte Carlo Uniform Random Simulations, the behavior parameter 

sets are equally divided into 10 groups ranked with model performance given higher 

value with better performing. The pink dots represent the best top 10% parameters 

comparing to the worst 10% parts with the light blue section). (a) Salt River basin; 

(b) San Pedro River basin; (c) Upper Gila River basin 
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Figure 2–9  Parameter dynamic analysis for each basin. It is a dynamic 

measurement of identifiability (Appendix A) to each parameter based on time series 

hydrologic behavior. Take parameter b and d2 as representators. (a) Salt River 

basin; (b) San Pedro River basin; (c) Upper Gila River basin  
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Chapter 3   Integrated Multi-Criteria Estimation under 

Parameter Uncertainty Quantification for Large Scale 

Distributed Hydrology Model 

 

3.1 Introduction 

Hydrologic models have proven to be a powerful tool for improving process 

understanding and providing predictive capabilities. Physically based models can be used 

to study hydrological behavior across a range of spatial and temporal scales. As the 

complexity of such models is increased, so are the number of model parameters required 

to represent the physical environment and processes (Franks et al., 1999). To achieve 

accurate simulations with respect to specified hydrologic characteristics, it is essential to 

select and apply an appropriate parameterization scheme. Distributed hydrologic models 

utilize various integrated routines to represent the storage and flux of water and energy 

within and between grid cells. Versatile parameterization frameworks represent 

competing degrees of parameterization (e.g. based on climatic conditions) and various 

methods for estimating hydrologic behavior (e.g. peak streamflow, water budget, or flood 

inundation) (Kollat et al., 2012). 
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Within the various parameterization approaches, it is commonly understood that 

different combinations of model parameter sets can result in a models that perform 

equally well with respect to a given objective. This concept is known as “equifinality” 

and was first emphasized in the field of hydrology by Beven and others (Beven & Binley, 

1992; Beven, 1993 and Freer et al., 1996). Thus, the equifinality concept assumes that 

equally good model performance can result from a branch of a parameter set with 

multiple possible combinations rather than the traditional hypothesis inherent in 

traditional calibration of uniqueness of a parameter set to optimize model performance 

(Beven 2000). 

A framework of trade-off measurements has been explored within the research 

area of model simulation in order to extract information based on the equifinality 

parameter sets (Gupta et al., 1998; Efstratiadis et al., 2010; Kollat et al., 2012; ). Such 

approaches consider multiple spatial variables, multiple responses based on temporal 

patterns, and multi-criteria by varying the terminal criteria (Blasone et al., 2008). 

However, the existence of trade-offs amongst these approaches reveals that a unique 

global optimization cannot reproduce the entire hydrological behavior with a single 

selected model performance measurement (Kollat, Reed and Wagener, 2012; Beven, et 

al., 2012). 

It is necessary to extract and quantify uncertainty information across the range 

of acceptable parameter space in order to assess the conditions that produce behavioral 

parameter sets. Behavioral parameter sets are those that perform at an acceptable level 

when comparing model results with a measurement of performance. In order to provide a 

robust framework, two questions must be resolved. First, how can we discriminate 
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behavioral parameter sets as optimal ones from within the random parameter population? 

As described for the term equifinality, the branch of optimal parameters can all be 

considered to have an equal (but not equivalent) performance. That raises a second 

question: how can we reveal the extent of uncertainty by aggregating those optimums? 

The goal of this chapter was to propose and demonstrate an integrated, multi-

criterion simulation routine based on parameter uncertainty quantification for large scale 

distributed hydrologic models. The ability to explore different objective functions to 

create optimal model performance was applied using several hydrological behavior 

features using time-series simulations. Two objective functions (Nash-Sutcliffe efficiency 

and Relative Error) were used to investigate model performance based on simulated peak 

streamflows and water volume, which are two crucial features for simulating streamflows. 

In order to evaluate and extract information from the acceptable range of 

potential parameter sets, the model uncertainty was quantified using two approaches. The 

first approach was based on the Generalized Likelihood Uncertainty Estimation (GLUE) 

approach, which was based on a likelihood algorithm using multi-criteria features to 

evaluate the acceptable parameter space. The second approach was based on the concept 

of Pareto optimality and a resulting Pareto front. The uncertainties of the simulations 

were also investigated by both methodologies.  

3.2 Background 

Many studies have recognized the condition of “overparameterization” where 

one or more model parameter is effectively inactive for representing the physical 

processes in a hydrological system (Schwarz, 1978; O’Connell, 1990, 1998; Demaria et 
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al., 2007). Overparameterization leads to increased computational requirements (Feyen et 

al., 2008; Whittaker et al., 2010) and can increase model uncertainty (Schoups et al., 

2008). In the context of large-scale distributed hydrologic models, the simulations require 

a large number of parameters in order to characterize spatial heterogeneities across grid 

scales (Wheater et al., 1999; Decharme et al., 2005; Richard et al., 2013). This condition 

greatly amplifies the challenges arising from overparameterization. Thus, it is possible to 

reduce the model dimensionality to a required level through sensitivity analyses. This 

reduces the dependency of model scales and locations (climatic gradient, mentioned in 

Chapter 2, Jia 2014) and improves the identifiability of model parameters with 

optimization techniques.  

A robust estimation scheme will reduce the overparameterization while 

addressing the following issues. First, it should be possible to emphasize key hydrologic 

aspects (e.g. peak streamflows and volume) by assigning various objective functions to 

characteristics of interest (Yapo et al., 1998; Boyle et al., 2000; Wagener et al., 2003a). 

Second, the scheme should be able to consider the tradeoffs amongst multiple objectives. 

For example, multi-objective analysis can be combined into a representative, 

conventional single-objective estimation (Seibert, 2000; Blasone, 2008 and Efstratiadis, 

2010). Third, the approach should be capable of incorporating multiple indicators of 

model performance to retrieve maximum information from time-series simulations results 

(e.g. high flow, low flow and flashiness) (Kollat, Reed, and Wagener, 2012).  

To a great extent, quantification of uncertainty can be used to identify feasible 

parameter space. The GLUE method is the most common approach for quantifying 

uncertainty in this regard (Beven and Binley 1992). Within the GLUE approach, 
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likelihood measures are used to assign higher weights to better performing models. 

Alternative approaches include the simple uniform random sampling method (used in 

Chapter 2 of this dissertation) (Uhlenbrook et al., 1999), Markov Chain Monte Carlo 

methods with Genetic Algorithms (Thiemann et al., 2001), Bayesian model averaging 

methods (BMA) (Ajami et al., 2007), Gaussian mixture model parameters estimation by 

Expectation maximum algorithm (Bilmes, 1998), and many other techniques for 

assessing uncertainty with parameter estimation procedures (Efstratiadis 2010). 

3.3 Methodology for Quantification Parameter Uncertainty with 

Multi-Criteria Estimation 

3.3.1 GLUE Method Characteristics 

3.3.1.1 GLUE Framework 

The GLUE methodology was proposed by Beven and Binley (1992). The 

method is based on Monte Carlo simulations with randomly chosen parameter values 

from a priori probability distributions and the application of Bayes Theorem. It is a robust 

method for calibration and quantifying uncertainty in hydrologic and environmental 

modeling related to model parameterization and outputs (Freer et al., 1996; Beven, 1998). 

Compared to other approaches, GLUE is flexible and it provides a simple approach to 

distinguish the global uncertainty by exploring interactions of parameters. 

The GLUE approach is based on the assumption that uncertainties arise from the 

equifinality phenomenon (Beven and Freer, 2001). Thus, the uncertainties associated 

with a set of parameter values (behavioral) are being assigned a likelihood based on the 
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acceptable criteria of a selected hydrologic behavior. The method is employed using 

Monte Carlo simulations with a large number of parameter sets, which are chosen 

randomly from prior distributions (usually uniform distributions). Based on a specific 

model performance criteria (objective function) model results are evaluated with respect 

to fit between the predicted and observed responses. A likelihood value is assigned to 

each set of parameter values with higher values given to better performing parameters. 

The sum of all likelihood values is equal to one. A threshold value is determined for 

which parameter sets performing worse than the criteria are described as non-behavioral 

and the likelihood for such sets is set to zero (Beven, 1992). 

3.3.1.2 Objective Functions (Termination Criterion) 

An objective function is used to evaluate model performance and in hydrologic 

modeling this is typically achieved by comparing simulated and observed results. 

Traditionally, it is common to select an objective function (OF) as a measurement to 

aggregate the residual variance through the application of mathematical functions (Gupta 

et al., 1998).  The minimum or maximum values of OFs represent the optimal model 

parameters. Inevitably, even by development of advanced powerful automatic calibration 

algorithm, it is necessary to combine with visual inspections to evaluate specific aspects 

of model performance by examining time series hydrographs (Boyle, Gupta and 

Sorooshian, 2000). Previous research (Wagner et al., 2001) has shown that a single-

criteria approach cannot fit all response model components and may fail to match some 

physical processes between prediction and observed hydrological behaviors (Efstratiadis, 

Koutsoyiannis, 2010). Within this study, we demonstrate a novel application by 

combining two objective functions (multi-criteria) in order to evaluate model 
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performance with respect to both peak streamflows and water volumes – both of which 

are important for examining behavior and performance of the hydrologic model.  

Two common objective functions were applied in this study. The Nash-Sutcliffe 

Efficiency (NSE) is considered to evaluate peak streamflows and the Relative Error (RE) 

is used to emphasis the water balance in simulated time period. The OFs are defined as 

follows: 

NSE=1-∑(𝑄𝑜𝑏𝑠−𝑄𝑠𝑖𝑚)2

∑(𝑄𝑜𝑏𝑠−𝑄�𝑜𝑏𝑠)2
         (Eq. 3–1) 

 

RE=�𝑅𝑠𝑖𝑚−𝑅𝑜𝑏𝑠
𝑅𝑜𝑏𝑠

� × 100%        (Eq. 3–2) 

 where 𝑄𝑜𝑏𝑠and 𝑄𝑠𝑖𝑚are the observed and simulated streamflow, respectively; 

𝑄�𝑜𝑏𝑠 is the mean value of 𝑄𝑜𝑏𝑠 ; 𝑅𝑠𝑖𝑚and 𝑅𝑜𝑏𝑠are the simulated and observed average 

annual streamflow, respectively. 

NSE can range from -∞ to 1 with an efficiency of 1 corresponds to a perfect 

match of simulated streamflow to the observed data. On the other hand, RE is spread over 

a range of 0 to +∞ where 0 represents perfect model performance. In order to facilitate 

visual analysis when evaluating model performance, NSE was transformed to 1-NSE 

with same patterns (0 to +∞) as RE when plotted.  

When investigating model performance based on multiple criteria, the modeler 

must have the ability to weigh trade-offs of model performance based on each criterion. 

Take Figure 2-8a (Random parameter scatter plot based on criteria values) as an example, 

following the Monte Carlo streamflow simulation runs outputs from Salt River basin (as 

shown in Chapter 2), model performance was analyzed but with a different OF, RE. The 
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goal of using a multi-criteria strategy is to identify the best overall model performance 

from multiple perspectives as provided by the combination of both NSE and RE 

parameter estimation processes. Figure 3-4 shows a trade-off curve between NSE and RE 

parameter estimation approaches. The lower-left corner provides the optimum values for 

both functions.  

3.3.1.3 Building a Relationship of the OF With Likelihood Function for GLUE 

The key feature for the application of the GLUE method in this research is the 

building of a likelihood function that couples the multi-criteria model performance – as 

opposed to the traditional use of statistical likelihood. The multi-criteria approach aims to 

optimize model performance based on emphasis of multiple aspects of the underlying 

hydrologic behavior (e.g. peak streamflow and water volume) (Gupta et al., 1998; Boyle 

et al., 2000). 

The principle of multi-criteria theory has been proposed and applied to 

hydrological and environmental simulations by Gupta and others (Gupta, et al. 1998; 

Yapo et al., 1998; Duan et al., 2013).  The theory can be expressed as follows: 

Minimize 𝐹 (𝜃) = {𝑓1(𝜃), … , 𝑓𝑚(𝜃)} subject to 𝜃 ⊂ Θ   (Eq. 3–3) 

Where 𝑓𝑚(𝜃) represents one of the model residuals or OFs; 𝜃 is the vector of 

calibrated parameters; and Θ is the feasible parameter space, which can be identified 

through the prior uncertainty of parameter distributions. 

An aggregating function (Efstratiadis and Koutsoyiannis, 2010) is needed to 

quantify the combined uncertainty associated with each OF. The function should also 

allow for an analysis of the trade-offs between multiple OFs (e.g. NSE and RE) in order 
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to achieve high model performance from multiple perspectives. The aggregation function 

proposed in this study combines NSE and RE OFs as follows (Blasone, R., et al., 2008): 

𝑁𝑆𝐸𝑅𝐸 = 𝐿 (𝑁𝑆𝐸𝑅𝐸) = 𝐹 (𝜃𝑖)  =  1−𝑁𝑆𝐸(𝜃𝑖)
𝑚𝑖𝑛 {1−𝑁𝑆𝐸(𝜃𝑖)} + 𝑅𝐸(𝜃𝑖)

𝑚𝑖𝑛{𝑅𝐸(𝜃𝑖)}   (Eq. 3–4) 

The likelihood measurement could be defined as subjective selections connected 

to terminal criteria (Beven et al., 2007;).  

3.3.2 Pareto Ranking for Uncertainty Cluster Outputs 

The concept of Pareto optimality was proposed in the Nineteenth Century by 

Italian economist Vilfredo Pareto (1848-1923) (Pareto, 1896). According to the principle, 

given an initial allocation of goods amongst a closed set of participants, a change to a 

different allocation that improves conditions for at least one individual without harming 

other individuals is called a Pareto Improvement. The allocation is defined as “Pareto 

optimal” when nor further improvements can be made via reallocation of goods.  

This concept can be extended to the context of optimal model performance. That 

is, we seek a condition at which point all residuals are simultaneously minimized. As 

shown in Equation (3-3), a Pareto set is a sub-set of the feasible parameter space that 

simultaneously minimizes all residuals.  It was assumed there are no objective functions 

that can satisfy all aspects of the time series hydrograph. Thus, a multi-criteria approach 

was adopted. The performance of an OF will vary depending which aspect of the 

simulation is emphasized (Gupta et al., 1998). The minimum values of OFs can be 

scatted in separate regions throughout the feasible parameter space. The area (plotted on a 

two-dimensional graph) between OFs’ optimal values is categorized as the Pareto space 

(Gupta et al., 1998; Das, 1999). The Pareto front is selected via a solver by searching the 

Pareto space and querying the solutions based on rank levels. The first Pareto optimal 
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front is identified based on interrogation of the whole feasible parameter space and 

assigned the rank one. The top ranked performer is removed and the interrogation is 

repeated to identify the second ranked solution amongst the remaining population. The 

process is repeated until all of parameter sets are ranked.  

3.3.3 Distinction Between GLUE and Pareto Based Methods 

In this chapter, a multi-criteria GLUE approach and a Pareto approach were 

used in conjunction to evaluate model performance and uncertainty. From a general 

perspective, these two approaches have relative strengths and weaknesses. With respect 

to GLUE, quantitative information can be extracted by a specified confidence level in a 

percentile format. This approach is convenient and the results are easily conveyed to 

managers. The likelihood is the key factor that influences the uncertainty. In contrast, 

outputs from the Pareto approach are used to formulate cluster ranges of simulations with 

minimum and maximum values constituting the bounds on each time step. The solver 

used to identify the Pareto front is crucial for ensuring appropriate trade-offs with Pareto 

optimality. Considering required computational resources, GLUE is more efficient and 

flexible as compared to the optimizing search used to generate the Pareto front. 

3.4 Case Study  

The model investigation reported in this chapter was based on VIC simulations 

of the Salt River basin, which is a tributary of the Gila River located primarily in eastern 

Arizona (see Figure 2-2). The watershed has a drainage area of 35,000 km2 and the 

elevation ranges between 300 m and 3500 m above mean sea level. The annual 

precipitation within the Salt River basin (Chapter 2) for the period under study (1981.1-
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2000.12) ranged from 370 to 900 mm, with a mean of 625 mm and a standard deviation 

of 134. Dominant land cover in the basin includes cotton, alfalfa, fruit and vegetables. 

Using the same general techniques as those described in Chapter 2, a VIC model 

was developed for the basin on a 1/8 degrees by 1/8 degrees basis. Input data were 

obtained as same in Chapter 2. A classical single-criteria calibration method was used to 

generate an initial model and to demonstrate general model performance. This was 

followed by the application of the GLUE and Pareto uncertainty techniques using the 

methods described above. The results from these analyses are presented in this section. 

3.4.1 Single-Criteria Calibration 

Traditional calibration approaches compare simulated and observed results for a 

parameter of interest (e.g. streamflow) using a single objective function. In this study, we 

first investigated model performance by applying to separate single-criteria objective 

functions. For each investigation, the optimal parameter set was determined by adjusting 

input parameters until the highest degree of fit could be achieved for both peak flows 

(evaluated using the NSE OF) and water volume (evaluated using the RE OF). These 

characteristics were also investigated separately.   

As described in Chapter 2, Section 2.2.1 showed the traditional calibration based 

on the Nash-Sutcliffe Efficiency (NSE) criteria. Here we investigated the same 

simulation results but we also include results for a second objective function, relative 

error (RE). The simulations were created based on Monte Carlo Random Search and 

around 104 unique parameter sets are selected for each objective function. Figure 3-1 

demonstrates the streamflow simulation time-series based on optimal parameter sets 

using NSE and RE objective functions in traditional calibration methods. As expected the 
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simulation results based on calibration using the NSE OF and peak flow as the evaluation 

parameter, performed much better with respect to matching large flow events (Figure 3-1 

a). Conversely, the simulation results based on the RE OF using water volume as the 

evaluation parameter, produced simulation results with a smooth time-series pattern and 

which better matched low-flow conditions (Figure 3-1 a). From the residual error plots, 

we can make the same conclusions (Figure 3-1 c). As mentioned in Chapter 2, the model 

simulation system has some bias with over-predicted streamflow, especially the 

significant bias based on the objective function RE (Figure 3-1 b). 

Insights can be gained with respect to the parameter sets resulting in good model 

performance (e.g. top 5%) by normalizing and plotting the parameter sets (Figures 3-2 

and 3-3). The parameter “equifinality” phenomenon can be visualized by inspecting the 

parameter distributions and examples of parameter sets for different objective functions. 

We can see parameter sets spread across the range of feasible parameter space that 

produce equally good model performance. This represents an alternative approach for 

visualizing the identifiability analysis discussed in Chapter 2 (Figure 2-8).  

Based on the NSE (Figure 3-2) and RE (Figure 3-3) objective functions, the top 

5% parameter sets from the Monte Carlo simulations were selected and plotted. The 

points corresponding to each parameter represent the range of parameter space. The lines 

represent the parameter sets. By comparing Figures 3-2 and 3-3, it can be seen that the 

optimal parameter sets are influenced by the selected objection function. However, 

general characteristics are similar between the two OFs. The dominant parameters b, Ws 

and d2, show relatively high identifiability with different extents of uncertainty. Within 

the optimal model performance regions, b is focusing in the range of 0.15-0.5 with some 
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spread above 0.5 when considering the NSE OF. Based on the RE OF, the lower range of 

b approaches zero and most points fall below 0.4 to 0.45. No points were observed above 

0.625. Ws demonstrates less uncertainty when considering the top performing parameter 

sets base on the RE OF as compared to the NSE OF. The parameter space also showed 

slightly less uncertainty for the RE OF compared to the NSE OF for the parameter d2. 

Insights can be gained by investigating the connections between these observations and 

the underlying physical mechanisms described by each parameter  

3.4.2 Multi-Criteria GLUE Analysis 

A multi-criteria GLUE analysis was completed by transforming the results into a 

single criteria framework, which was used to assign weights to each parameter set. The 

results were investigated using a best-fit criterion rather than the traditional likelihood 

function as described by Beven (1996) and defined by Franks (1998). The effects of 

conditioning based on the ranked behavioral parameter response are shown in Figure 3-5. 

The plots consider the interaction of multiple parameters by representing the likelihood 

value with respect to each parameter set. Each point represents the likelihood value with 

respect to each parameter set. The higher likelihood values are weighted as simulations 

with better fit of the observed streamflow time-series. 

The likelihood weighted output from the GLUE technique can be used to 

generate confidence bounds for simulated streamflows. For example, Figure 3-6 shows 

the 95% confidence bounds, which encompass most of the observed discharge values. 

Another example of the utility of this analysis is contained in Table 3-1. The uncertainty 

of the model’s forecast of water volume over the simulation was quantified to as (1.89 ±

0.02) × 1010𝑚3 at the 95% confidence interval. 
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3.4.3 Multi-Criteria Pareto Analysis 

The multi-criteria Pareto analysis allows for the interrogation of model 

performance based on multiple OF and to identify high-performing parameter sets along 

a Pareto front, which represents a tradeoff between the two OFs. Figure 3-7 was shows 

the resulting OFs from model results generated through Monte Carlo random simulations 

across the range of feasible parameter space. Although there is a general correlation 

between the two OFs, the challenge of tradeoffs is more obvious when observing the 

high-performing points in red (bottom left corner). These points represent top performing 

simulations with respect to both OFs.  

As a consequence, the results from the multi-criteria Pareto analysis can be used 

to quantify uncertainty using the high-performing parameter sets. Figure 3-8 

demonstrates the Pareto output uncertainty as applied to the simulation time series. 

Rather than a single time series dataset, the Pareto output provides a range of potential 

streamflow simulations. Further, the total water total water volume in the research period 

ranges from 1.40 × 1010 to 2.37 × 1010m3  (Table 3-1). 

3.5 Conclusions and Discussions 

The goal of this chapter was to propose and demonstrate an integrated, multi-

criterion estimation routine based on parameter uncertainty quantification for large scale 

distributed hydrologic models. This was accomplished using two methods: (1) a multi 

criterion within a GLUE framework (rather than the traditional likelihood function); and 

(2) investigation of tradeoffs using a Pareto front framework.  
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Exploring model performance based on classical single-criteria calibration 

approaches revealed that the simulated discharge time-series could not reproduce peak 

streamflow and water volume characteristics. As expected, the NSE OF performed well 

in simulating peak streamflow but poorly with respect to water volume. Likewise, the 

model performance was accurate when forecasting water volume when using the RE OF 

but poorly in describing peak streamflow. 

To address the multi-criteria trade-offs issue, the two objective functions were 

transformed into a single criteria within the GLUE methodology. This technique was 

compared with a Pareto optimum methodology. These approaches represent different 

strategies to extract optimal parameter sets based on the concept of equifinality. Within 

the GLUE method, the optimal sets were formulated by assigning higher likelihood 

values to parameters with good performance. Optimal sets were observed with the Pareto 

set by ranking parameter sets base on different levels along the Pareto front. The 

quantification of uncertainty reveals the tradeoffs between simulating different aspects of 

the hydrologic system. The GLUE analysis revealed relatively low uncertainty and in the 

time series, as compared to the Pareto front results. However, it overestimated the water 

volume compared to the historical observation. In contrast, the uncertainty bands 

generated from the optimal Pareto sets were overall larger. However, the observed 

volume of water was within the predicted range of values. 

The results of the case study demonstrated the utility of the uncertainty analyses 

for generating probabilistic confidence intervals. The differences in the extent of 

uncertainty generated by the two approaches can be related to the underlying physical 

processes as explored in Chapter 2. Recall, from the identifiability analysis of parameter 
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d2 (the second layer soil depth) presented in Chapter 2, the parameter was found to be 

slightly identifiable with respect to the optimal aspects through the whole feasible 

parameter space. However, it showed a high degree of identifiability across the whole 

behavioral criteria space. This result introduces an overestimate of streamflow.  

Within the GLUE framework, the likelihood weighted to one particular 

parameter will vary depending on the values assigned to other parameters. As a result, the 

likelihood is associated with a set of parameters rather than a single parameter. Thus, it is 

only considered as an acceptable parameter within the series of weights assigned across 

the set of parameters. Such uncertainties are reflected within the confidence bounds. 

These impacts potentially contribute to the overestimate of streamflow yet narrow 

uncertainty bounds with the GLUE results as compared to the Pareto outcomes.  

The issues of equifinality with parameter interactions are an important source of 

uncertainty for hydrologic simulations. An appropriate parameterization with higher 

identifiability would help reduce the degree of uncertainties.  

Overall, the results of this study revealed reliable and reasonable probabilistic 

hydrologic predictions by quantifying parameter uncertainty. Concerning the practicality 

to water management, the model results showed an overall overestimate of water yields 

beyond the specified confidence levels.  
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Table 3–1  List probablistic analysis with observed discharge, GLUE uncertainty 

outputs and Pareto uncertianty outputs 

Adopted 

Approaches 

Standard 

Deviation 

Total Volume 

(m3) 

Uncertainty Extent 

(m3) 

Observed  1.75×1010  

Pareto uncertainty 2.82×109 1.95×1010 (1.4 ~ 2.37)×1010 

GLUE uncertainty 2.12×109 1.89×1010 (1.89 ± 0.02)×1010 
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Figure 3–1  Traditional single-criteria streamflow simulations with respect to 

different objective functions.  (a) The black points represent observed monthly 

discharge under study period. The blue and pink lines represent the best simulated 

streamflow compared to observed time series based on NSE and RE, respectively. (b) 

Modeled vs. observed streamflow for both objective functions. (c) Residual errors 

plot. 
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Figure 3–2  Normalized parameter sets space selected by optimal value due to NSE 

performance. Among them, the top 5% optimal clusters are drawn (each red line 

represents a parameter set; the black line represents the optimal parameter set based 

on NSE). 

 
 

Figure 3–3 Normalized parameter sets space selected by optimal value due to RE 

performance. Among them, the top 5% optimal clusters are drawn (each blue line 

represents a parameter set; the black line represents the optimal parameter set based 

on RE). Note: Each line represents one parameter set which could be given a 

measurement by model performance it will be meaningless with single point. 
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Figure 3–4  A hypothetical example trade-off between NSE and RE is shown. This 

trade-off is also referred to as the Pareto optimality. The performance drop into the 

lower left corner could satisfy both of the objective functions. 

 

Figure 3–5  GLUE likelihood measures with multi-criteria NSE&RE tradeoffs for Salt 

River basin. The application of GLUE in this research is subjectively selected the 

likelihood function as terminal criteria (defined in equation 3-4 and 3-5). Scatter plots 

also represent model performance with higher likelihood values by better simulations. All 

of those likelihood values spread through the parameter space should be added up to one. 
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Figure 3–6 GLUE output associated confidence limits. Hydrograph of 95% 

percentile confidence prediction bounds estimated by GLUE with multi-criteria 

tradeoffs. The blue point indicates observed streamflow and the grey shaded area 

represents the prediction uncertainty resulted from GLUE estimation. The black 

line demonstrates the uncertainty bounds with specific (95%) confidence level. 
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Figure 3–7  Pareto front selected based on trade-offs between NSE and RE. The 

blue points represent model performances from all random simulations with repect 

to the adopted two objective functions. The red points are the optimal sets filted by 

pareto ranking algorithm. The cluster simulations related to these red points are 

remarked as pareto uncertainty bounds. 
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Figure 3–8  Pareto output uncertainty. The pink points are observed monthly 

discharge time series. The grey areas are extracted from pareto optimal space which 

represents the red points simulation cluster as shown in the last figure. 
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Chapter 4   Conclusions and Future Works 

 

4.1 Conclusions 

With the development of highly complex hydrologic models using a wide range 

of parameterization methods to representing hydrologic processes, several challenges 

arise with respect to parameter estimation and quantification of model uncertainty. A 

novel approach of estimation-uncertainty investigations was proposed and demonstrated. 

The procedure also considers temporal variability of parameters through time-series. The 

issues of identifiability and overparameterization with respect to parameter uncertainty 

and qualitative information were explored. The techniques used in this research are 

programmed within MATLAB using the Linux platform and the VIC model. These 

scripts will be packaged and available to the community (similar to SWAT-CUP 

designed to integrate calibration/uncertainty analysis) (Abbaspour et al., 2007; Singh et 

al., 2013).  

4.1.1 Building a Framework to Effectively and Efficiently Demonstrate Estimation 

Scheme 

To achieve an efficient and effective simulation with respect to specified 

hydrological aspects, it is necessary to recognize the required degree of complexity by the 
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application of complex distributed hydrologic model with proper parameterization. The 

characteristics of the framework are presented in Figure 4-1. The tasks of the new 

framework are to recognize parameter sensitivity and identifiability within a spatially 

distributed and temporally varying procedure for large-scale hydrologic models. This 

framework was demonstrated through application of the VIC model within the Gila River 

basin. The strategy includes the projection of parameter space through a population-

searching algorithm such as the Monte Carlo Uniform Random Sampling (MCURS) 

approach based on climatic conditions; a regional sensitivity and identifiability analysis 

(RSA) by categorizing free parameters as inactive, lumped, and distributed properties; 

implementation of a dynamic approach (DYNIA) to identify parameters’ transient 

heterogeneity varying through time-series. The overall approach allows the modeler to 

discriminate overparameterization conditions by recognizing them as inactive, lumped, 

distributed, improper representation of model aspects, to reduce parameter dimensionality 

and finally to address an efficient and effective simulation of hydrological processes. 

The framework takes into consideration both basin characteristics 

(climatological condition) and temporal variations while coupling with multi-parameter 

interaction and correlation. It represents an enhanced evaluation of parameters with 

basin-wide variability, cross-subbasin variability, and temporally based dynamic 

variability. The approach also provides a flexible approach for improving hydrologic 

estimation effectively and efficiently. The case results reveal implications for hydrologic 

aspects process studies for future uncertainty research (Chapter 3). 
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4.1.2 Quantifying Hydrological Responses through Integrated Multi-Criteria 

Simulation 

The improved effectiveness and efficiency of model simulation (Chapter 2) 

through adjusting to a moderate level of complexity and parameterization still comes with 

parameter uncertainty. By this recognition, it becomes clear that the classical 

optimization approach as deterministic single value optimal forecast is flawed  (Beven et 

al., 2012). Instead, the improved estimation procedure presented in this research with 

respect to the equifinality phenomena results in an improved representation of variability. 

The development and application of a novel framework with qualitative information, 

allowed us to investigate two important questions: How can we discriminate between 

behavioral parameter sets as optimal conditions from random parameter population? Also, 

how can we reveal the extent of estimation by aggregating those optimums (GLUE & 

Pareto Optimality)?  

A framework measurement of trade-offs was explored within a multi-criterion 

estimation routine using different objective functions (Nash-Sutcliffe Efficiency and 

Relative Error) based on simulated peak streamflows and water volumes. The 

quantification was investigated by GLUE with subjective selection of likelihood with 

multi-criteria function and Pareto optimality approach. The results were shown in specific 

confidence percentile and Pareto space. The parameter uncertainty was shown as a range 

of possible time-series simulations with upper and lower limits (meaningful 

representation of uncertainty bounds) with most probable indicators, such as average, 

maximum & minimum, confidence interval and variance. Within the improved context, 

the single estimation based on global optimal simulations or the combination with typical 
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parameter forecasts with likelihood weighting on each time step could be highlight. The 

subjective output as a user-preferred solution can be extracted as a deterministic format, 

which is reliable and more understandable within a decision-making process as applied in 

water resources engineering. 

4.1.3 Integration of a Post-Processing Tool for Estimation/Uncertainty Analysis 

The practical output for this research is a series of MATLAB scripts produced 

within the Linux platform and applied to the VIC model. These scripts include 

optimization methods, uncertainty analysis techniques, data formatting pre-process (grid, 

binary, ASCII, etc), output probabilistic post-process and script connectors between each 

other with various platforms by coupling different computer languages (C++, Fortran, 

Matlab, Linux operation). These scripts will be bundled into a package and made 

available to the water resources community in a format similar to SWAT-CUP. SWAT-

CUP was designed to integrate calibration/uncertainty analysis as a post-process tool for 

the Soil Water Assessment Tool (SWAT) (Abbaspour et al., 2007). The modeling 

package will be a helpful and user-friendly tool to support large-scale hydrologic 

modeling.  

4.2 Recommendations for Future Research 

With the recognition of inherent uncertainty properties in hydrologic sciences, 

the enhanced pareto estimation framework should be further explored beyond the usual 

classical optimal “best” deterministic scheme through coupling with qualitative 

information. The current progress of this research mainly focuses on parameter 

uncertainty analysis. The factors contributing to uncertainty of hydrologic behavior 
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simulations (Hall et al., 2008) include incomplete knowledge of the system, variability in 

system properties, randomness in systems, measurement and sampling errors, and actual 

scales of the system (Georgakakos et al., 2004; Meyer et al., 2007). It is important and 

necessary to comprehensively and quantitatively describe the influence of uncertainty on 

the entire simulation process (Ajami et al., 2007). 

The various sources of uncertainty can be divided into three categories: (1) 

parameter uncertainty; (2) concept model uncertainty; and (3) scenario uncertainty. 

Parameter uncertainty includes the unknown distribution of model parameters. Concept 

model uncertainty is due to assumptions in the underlying physical description in the 

model. Scenario uncertainty is due to unknowns regarding future conditions. The long-

term aim of the framework proposed in this study is to demonstrate a systematic 

uncertainty analysis that can be applied to climate change impact studies (Hamlet and 

Lettenmaier, 1999; Engeland et al., 2005; Hamlet et al., 2010) in the future by the 

following objectives: (1) Develop and demonstrate a framework for evaluating 

uncertainty in a study to improve management of water resources; (2) Quantify 

uncertainty (including parameter, model, and scenario based uncertainties in a climate 

change assessment for water resources; and (3) Combine and evaluate the statistical 

confidence associated with each uncertainty component to overall impacts and to assess 

where uncertainties can be reduced through future research. 

Through my dissertation research, I have conducted a systematic evaluation of 

an effective and efficient framework with a large scale distributed hydrologic model by 

parameter estimation. Additionally, the building of the current framework advanced 

understanding of the influences of scales, climatic conditions, heterogeneity (spatial and 
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temporal with dynamic), which will help to address the future model and scenario 

components. 

The scripting products developed through this study are ideally suited for 

investigating uncertainty associated with model structure and climate chance scenario 

uncertainty. The resulting tool can comprehensively and reliably address these issues to 

improve decision-making. 

The implementation of such a framework will facilitate an improved approach 

for addressing climate change impacts on natural systems. Further, a study of this nature 

will advance understanding of how climate change is likely to impact water resources 

including water supplies. Finally, the approach can help modelers and decision makers 

better understand the relative contributions to uncertainty in order to inform future 

investments to reduce uncertainties. 
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Figure 4–1  Characteristics and flow chart for the framework of estimation-

quantification uncertainty to large scale distributed model building in this research. 
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Appendix A  An Approach to Measure Parameter 

Identifiability 

The measurement of identifiability is based on a projection of parameter space 

using Monte Carlo Uniform Randomly Simulation (MCURS). Choosing a parameter 

prior distribution with an upper and lower bound limits as feasible parameter space, then 

divide the Monte Carlo sampling into equally ten groups based on the rank of model 

performance with respect to a selected objective function. Then calculating the 

cumulative distribution of the best performing in each group. For parameters’ prior 

distribution as uniformly, accordingly, the cumulative distribution should be a straight 

line with non-identified properties. So the gradient of the cumulative distribution line 

could be seen as an indicator to measure how well or poor identifiable for a parameter 

(Figure A-1). Take the Salt River basin and San Pedro River basin as an example with 

parameter b and d2. 

Figure A-2 shows the same parameter b with different climatic gradient region. 

From the scatter plot, it could be recognized from the identifiability definition, the b in 

San Pedro River basin should be highly identifiable than in Salt River basin, in 

correspondence to the gradient diagram, the cumulative distribution line with a steeper 

gradient in San Pedro than in Salt River basin. 

Figure A-3 indicates the measurement of identifiability with different parameter 

b and d1 on San Pedro River basin. Obviously, the parameter b is much identified than d1. 
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This approach could be a standard of choosing a fit degree of model complexity with 

respect to specific hydrologic behavior, climatic gradient or hydrologic impacts analysis. 

If the gradient was examined in every time steps, it will be extended to the 

approach to parameter temporal dynamic heterogeneity analysis, the details of the 

application are listed in Appendix B. How gradients for a well identified and poorly 

identified parameter are recognized as a function of time step. 
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Figure A–1  Shows the definition and calculation to measure identifiability. Take 

parameter b on San Pedro River basin as an example. 

 

 

         (a)  San Pedro River basin                               (b)  Salt River basin 

Figure A–2  Shows the identifiability to same parameter b with different climatic 

gradient region. The parameter b has much higher identifiability in San Pedro 

River basin than Salt River basin 
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Figure A–3  Measurement of identifiability with parameter b and d1 on San Pedro 

River basin. It demonstrates the parameter b has much higher identifiability than 

parameter d1. The cumulative distribution based on NSE with parameter d1 is 

almost straight line which means non-identified in this region.  
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Appendix B Application of the Approach to Measure 

Identifiability - DYNIA 

The Dynamic Identifiability Analysis (DYNIA) is a new method to locating 

periods of high identifiably for individual parameters through time series and could to 

detect failures of model components (Wagener et al., 2003a). It is appropriate to improve 

the amount of information that can be extracted from simulations under the context of 

“cluster” optimization scheme. The elements of this method include employed by 

Regional Sensitivity Analysis (RSA) and the Generalized Likelihood Uncertainty 

Estimation (GLUE). 

The steps of this approach can flow through Figure B-1. Firstly, examining the 

feasible parameter space based on the population-searching algorithm using Monte Carlo 

method with a uniform prior distribution to project a random prior parameter space; 

Secondly, calculating the identifiability measurement (Appendices A) for the best 

performing parameter values (e.g., the top 10% sections); Finally, segmenting the range 

of each parameter and calculating the identifiability measurement (gradient) in each 

container. The procedures are employed in each time step. So the plot results could be 

shown as a function of time with identifiability measurement. The degree of 

identifiability was recognized as color grids, with well identifiability of the parameter in 

dark grid, in versus, sign a light color grid when is poor identified. 
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Figure B–1  Procedure to DYNIA (Wagener et al., 2003a) 
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